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ABSTRACT

Elite athletes not only run faster, hit harder, and jump higher, but also see and react better. However, the
specific visual-motor skills that differentiate high-achieving athletes are still not well understood. In this
paper we examine 2317 athletes (1871 male) tested on the Nike SPARQ Sensory Station, a digital test
battery measuring visual, perceptual and motor skills relevant for sports performance. We develop
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a multivariate Gaussian transformation model to robustly estimate visual-motor differences by level,
gender, and sport type. Results demonstrate that visual-motor performance is superior for athletes at
higher levels, with males faster at near-far eye movements and females faster at eye-hand reaction times.
Interestingly, athletes who play interceptive sports such as baseball and tennis exhibit better measures of
visual clarity, contrast sensitivity and simple reaction time, while athletes from strategic sports like soccer
and basketball have higher measures of spatial working memory. These findings provide quantitative

evidence of domain-specific visual expertise in athletes.

1. Introduction

Sports place incredible demands on the human visual systems.
Hitting a baseball, returning a serve, or blocking a shot on goal all
require an athlete to see and react with great efficiency and
accuracy. Over the last several decades, scientists have attempted
to understand how the eyes and the visual brain contribute to
athletic expertise (Gregory, 1997; Yarrow, Brown, & Krakauer,
2009). As captured in two recent meta-analyses (Mann,
Williams, Ward, & Janelle, 2007; Voss, Kramer, Basak, Parkash, &
Roberts, 2010), higher-achieving athletes are better at detecting
perceptual cues, efficiently moving their eyes, processing infor-
mation quickly, and maintaining attention. Across this literature,
elite athletes tend to outperform sub-elite athletes and non-
athletes in both sports-specific tasks and component-skill tasks
that tap into broad, fundamental visual (Hitzeman & Beckerman,
1993; Laby et al., 1996) and perceptual-cognitive mechanisms
(Casanova, Oliveira, Williams, & Garganta, 2009; Starkes &
Ericsson, 2003; Williams & Ericsson, 2005; Williams & Ford, 2008).
In addition, these expertise-related benefits are largely reflective
of the types of demands that are required by the specific roles
athletes play. For example, experts in sports that require a greater
horizontal distribution of attention (e.g., hockey) demonstrate
a greater horizontal breadth of attention than athletes whose
sports require more vertical attention (e.g., volleyball), and vice
versa (Huttermann, Memmert, & Simons, 2014). Moreover, recent
studies have begun to find that measures of visual-motor abilities
are able to predict future game performance in professional
baseball (Burris et al., 2018; Laby, Kirschen, Govindarajulu, &
Deland, 2018), collegiate hockey (Poltavski & Biberdorff, 2014),

and pro basketball (Mangine et al., 2014), making these poten-
tially valuable scouting measures. Collectively, these studies have
indicated that high-level athletes may be experts at processing
some types of visual information (Klemish et al., 2017) (though
see (Eccles, 2006)), making athletes a valuable population to help
understand the limits of visual-motor abilities in individuals with
considerable training.

While studies of visual-motor expertise represent a fruitful
domain for exploring models of learning and determining the
limits of human performance, research with experts has been
severely limited in impact because of small sample sizes and
heterogeneous psychological constructs. In particular, it is diffi-
cult to obtain access to high-achieving individuals for research
purposes, and therefore inferences about experts are often
inconclusive due to the large degree of uncertainty inherent in
small sample sizes'. In addition, each study uses different tests to
measure visual-motor abilities, which has resulted in a disparate
set of findings that are difficult to aggregate (Eccles, Walsh, &
Ingledew, 2006; Voss et al., 2010). It is also not always clear how
performance on controlled laboratory tests maps onto real-world
achievement, therefore creating a fundamental disconnect
between research and practical applications. Despite these lim-
itations, there remains tremendous interest in understanding the
visual, perceptual, cognitive, and motor faculties that differenti-
ate experts from non-experts, and in revealing how these differ-
ences relate to specific experiences and outcomes.

In 2011, Nike Inc. launched the SPARQ Sensory Stations as
a tool to quantitatively evaluate athlete visual-motor abilities.
The Sensory Stations include a battery of nine psychometric
tasks administered under standardised conditions with video
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instructions by trained and certified administrators. Prior to
testing, participants complete a registry of information that
reports demographic (e.g., age and height), sport (e.g., primary
sport and position), concussion history (number and recency),
and vision (e.g., eye dominance and eye care history) character-
istics (Wang, Delang, Vittetoe, Ramger, & Appelbaum, 2018).
The Sensory Stations operated for four years until 2015 and all
assessment data were maintained on a central database. This
information was used to provide sport-specific normative infor-
mation to individuals about their abilities compared to their
specific athletic cohort and to monitor learning when coupled
with sensorimotor training interventions.

Past research with the Sensory Stations has demonstrated that
the battery of tests is reliable (Erickson et al., 2011; Wang et al.,
2015), with scores on some tasks demonstrating linear improve-
ments with practice over multiple sessions (Appelbaum, Lu,
Khanna, & Detwiler, 2016; Krasich et al., 2016). Furthermore, similar
to visual-motor tasks based on other platforms, those on the
Sensory Station have also been shown to predict athletic perfor-
mance. In particular, Burris et al found positive associations
between measures of visual-motor control and game statistics
such as on-base percentage, strikeout rate, and walk rate in
a sample of 252 professional baseball players (Burris et al., 2018).
Collectively, as reviewed by Appelbaum and Erickson (Appelbaum
& Erickson, 2016), there is a growing body of research pointing to
the utility of this battery in both scouting and training of visual-
motor skills essential to high-level performance.

In the current study, we analyse 2317 athletes tested on the
Sensory Station to evaluate the relationship between visual-
motor abilities and athletic expertise across levels of achieve-
ment and sport type, for both men and women. For this purpose,
we develop a Bayesian semiparametric transformation model for
the analysis of multivariate data (see Section 2 and Appendix).
This model has particular value in that it can be applied generally
to datasets that contain missing values, negative values, mixed
data types, and non-normal marginal distributions (Hoff, 2007).
Model estimation is based only on the ranks of the data, which
enables robust inference that is invariant to monotonic transfor-
mations of the data. Using this methodology, we model athlete
scores for seven of the nine sensorimotor tasks, excluding Depth
Perception and Go/No-Go due to known limitations with
Bluetooth connectivity and a restrictive threshold, respectively
(Wang et al., 2015). We consider covariates such as the level of
athletic expertise, primary sport type, and gender. Athletic exper-
tise is defined as the self-reported level of the athlete (Middle
School, High School, College, Professional). Following past
research (Mann et al., 2007; Voss et al., 2010), sports are classified
as interceptive if the primary athletic actions require coordination
between an athlete’s body, body parts, or a held implement, and
an object in the environment (e.g., tennis, baseball) (Davids,
to divide attention in order to monitor the location of team-
mates, opponents, and projectiles on the field (e.g., soccer, bas-
ketball) (Singer, 2000). We fit two separate models: one including
only the main effects for interpretability and the other with all
two-way interactions to capture heterogeneous relationships
across combinations of level, sport type, and gender.

The present study was therefore conducted to provide
new insight into the attributes of visual-motor skill that
differ across genders, levels, and sport types. Based on the
past literature noted above, it is expected that athletes at
higher levels of achievement would demonstrate greater
performance scores across all assessment tasks. Based on
existing meta-analytic syntheses of athlete perceptual-
cognitive expertise (Mann et al., 2007; Voss et al., 2010),
it is expected that athletes from interceptive sports would
exhibit faster processing speeds, while no strong expecta-
tions are present for gender differences.

2. Methods

In this section, we provide a brief description of the partici-
pants, the Sensory Station assessment tasks, and the semipara-
metric modelling approach used in this paper. For the sake of
clarity, mathematical details of our statistical model are pro-
vided in the Appendix.

2.1. Participants

Data comprising the tested dataset were obtained through
two sources. 171 of the participants were evaluated by the
author’'s research team, with informed consent under
a research protocol conformed to the standards of the
Declaration of Helsinki and approved through both the
Duke University Institutional Review Board (B0306) and the
Human Research Protection Office of the US Army Medical
Research and Materiel Command (A-18957). All other data
were shared under a secondary-data protocol approved by
the Duke IRB (protocol B0706) and Army MRMC (A-18957).
Under this protocol, data were collected for “real world
use,” without informed consent, and shared with the
research team after removal of all protected health informa-
tion. As such, these data conform to U.S. Department of
Health and Human Services, “Regulatory considerations
regarding classification of projects involving real world
data (DHHS, 2015)", but did not involve direct contact
with the research subjects.

The final analysed dataset consists of the task scores, as well
as athlete characteristics such as level of expertise, primary
sport, and gender for 2317 athletes (1871 male, 446 female).
Tables 2 and 3 describe the distribution of gender, sport type,
and level of expertise for athletes who completed a Nike
Sensory Station evaluation. The dataset was obtained from 28
centres located in English speaking countries (Canada, United
States or England). These stations were in operation by profes-
sional sports teams (N = 6), collegiate athletic programmes
(N = 4), optometrists who provide sports vision care (N = 13),
research laboratories (N = 3), and athletic training facilities
(N = 4), with two research laboratories also servicing collegiate
athletic programmes.

All data was pre-screened to assure consistency in reporting
of athlete level and participant age, with 11 (0.5%) excluded
because listed ages fell outside acceptable ranges for Middle



School (10-16 yrs), High School (14-19 yrs), College (17-28 yrs),
and Professional (14-70 yrs).

2.2. Sensory station tasks and data

The Sensory Stations consist of a battery of nine computerised
tasks (Table 1), each designed to evaluate a specific facet of
a participant’s visual-motor abilities. Evaluation sessions were
conducted by Nike-certified technicians who logged into the
system to access the testing application. Prior to the behavioural
tasks, the technician entered information about the participant
including their demographics (e.g., age, gender, height, handed-
ness, eye dominance) and sport participation (e.g., primary sport,
primary position, level of achievement). The first five tasks were
then presented on a 58 cm display monitor and completed using
a handheld Apple iPod Touch, standing 4.9 m from the station.
The last four tasks were completed at arm’s length on a 107 cm
touchscreen monitor placed at eye level. Four of the tasks —
Visual Clarity, Contrast Sensitivity, Depth Perception, and Target
Capture - operated on staircase schedules in which subsequent
trial difficulty increased following a correct response and
decreased following an incorrect response. For these tasks,
scores were calculated as the final step according to response
accuracy on the staircase schedule. All tasks were preceded by
video instructions in environments tailored to space and lighting
specifications for use of the Sensory Station device. Procedures
and descriptions for each task are provided in the Appendix
section A1, and detailed descriptions can be found in (Erickson
etal., 2011; Wang et al., 2015).

A summary table of the task scores in the Nike database
is provided in Table 4. Raw scores for each of the tasks are
recorded on different scales; for example, Visual Clarity
scores are expressed in log MAR units and can take on
negative values, whereas typical scores for Eye-Hand
Coordination are reported in milliseconds and range
between 40,000 and 70,000. In addition, lower raw scores
are better for some tasks, such as Reaction Time, but worse
for others, such as Perception Span. For interpretability, we
centre and scale the responses such that a higher standar-
dised score corresponds with superior performance on the
task. Figure 1 illustrates the standardised marginal distribu-
tion for each of the task scores. The distributions of task
scores tend to be left-skewed, with a few outliers in the
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Table 2. Distribution of athlete level and sport type for male athletes.
Male Athlete Level

Sport Type Middle School High School College Pro Total
Strategic 122 222 459 358 1161
Interceptive 75 123 m 401 710
Total 197 345 570 759 1871

Table 3. Distribution of athlete level and sport type for female athletes.

Female Athlete Level

Sport Type Middle School High School College Pro Total
Strategic 40 61 86 57 244
Interceptive 39 55 105 3 202
Total 79 116 191 60 446

Table 4. Scores representing the 5th, 25th, 50th, 75th, and 95th percentiles for
each of the seven tasks considered in this study. Lower scores are better in the
Visual Clarity (VC), Target Capture (TC), EyeHand Coordination (EHC), and
Reaction time (RXN) tasks, whereas higher scores are better in the Contrast
Sensitivity (CS), Near-Far Quickness (NFQ) and Perception Span (PS).

Percentile VC cs NFQ TC PS EHC RXN

5% 0.14 1.00 1500 57500 1500 65063.80 418.29
25% —-0.04 140 1200 37500 28.00 58203.00 379.00
50% -0.14 1.60 25.00 275.00 34.00 54996.00 355.71
75% —0.21 1.80 29.00 200.00 41.00 52320.00 335.86
95% —0.28 2.00 34,00 12500 56.00 48910.20 309.57

lower tail. Although all task scores are numeric, many are
discrete (e.g., Contrast Sensitivity, Perception Span), while
others are continuous (e.g., Reaction

Time, Eye-Hand Coordination). In addition, three of the tasks
have missing values: Visual Clarity is missing 15, Contrast
Sensitivity six, and Depth Perception 104.

2.3. Semiparametric regression model

In this study, we aim to estimate and quantify the uncertainty
about the relationships between performance on the tasks and
covariates such as gender, level, and sport type. A standard
approach for quantifying these relationships is to specify sepa-
rate linear regression models for each task, in which the
observed task scores are modelled as linear functions of the
covariates of interest with normally distributed errors. However,
model diagnostics indicate that the residuals are not only
correlated within individuals, but also not normally distributed,

Table 1. Brief descriptions of the Nike Sensory Station tasks. # denotes tasks that were performed under a staircase schedule.

Task Original Units Label Description

Visual Clarity () log(MAR) VC Measures visual acuity for fine details at a distance

Contrast Sensitivity (#) log(Score) (& Measures the minimum resolvable difference in contrast at a distance

Depth Perception (#) log(Score) DP Measures how quickly and accurately participants are able to detect differences in depth at
a distance using liquid crystal glasses

Near-Far Quickness # Correct Responses NFQ measures the number of near and far targets that can be correctly reported in a 30 second time
interval

Target Capture (#) milliseconds TC Measures the speed at which participants can shift attention and recognise peripheral targets

Perception Span # Correct Responses PS Measures the ability to remember and recreate visual patterns

Eye-Hand Coordination  seconds EHC measures the speed at which participants can make visuallyguided hand responses to rapidly
changing targets

Go/No-Go seconds GNG Measures the ability to execute and inhibit visually guided hand responses in the presence of
“go” and “no-go” stimuli

Reaction Time milliseconds RXN Measures how quickly participants react and respond to a simple visual stimulus
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Figure 1. Distribution of standardised task scores for the athletes in the Nike database.

violating the inferential assumptions associated with these
models.

Accordingly, we proceed to develop an extension of the
semiparametric transformation model introduced by Hoff
(2007) for multivariate regression. We choose to do this
because we desire a model that (1) models the task scores
jointly, rather than separately; (2) is suitable for discrete and/
or skewed data; and (3) simultaneously handles data that was
assumed missing at random (MAR). Parameter inference for the
model is conducted in a Bayesian framework, with approximate
samples from the joint posterior distribution obtained via
Markov chain Monte Carlo (MCMC) simulation methods. The
model we propose is particularly robust, as inference is based
only on the ranks of the observed data.

Let y; represent the task score for athlete i on task j, where
there are n athletes and p different tasks. We assume that y;;
arises as a monotonically non-decreasing transformation of
a latent variable u; € [0,1]. In context, u; corresponds to the
percentile of performance, so a value of u; = 0.99 means that
the athlete i performed in the 99th percentile on the jth task. It
is important to note that uj; is not necessarily known even if y;;
is observed. To see this, consider a task that consists of a single
True/False question, in which 80% of individuals respond
correctly. If an individual attempts the task and answers cor-
rectly, we only know that u; € [0.2,1], since we cannot differ-
entiate among the individuals who answered correctly.

Let z; = (O(uj),D(ujp)), where O is the cumulative distribu-
tion function (CDF) of the standard normal distribution. As @ is
a monotone increasing function, z; is a vector that indicates

athlete performance on the p tasks. Furthermore, let x; € R7 be
a vector of g centred covariates observed about athlete i. We
model the relationship between z; and x; linearly, such that

z~N, (x/B, C), M

where B € R?? is a matrix of regression coefficients, C € RP®
is a correlation matrix, and N, corresponds to a p-dimensional
multivariate normal distribution. In our application, By; represents
the magnitude of the linear relationship between the kth covariate
and the transformed performance on the jth task. If C is equal to
the identity, then the task scores are not correlated with one
another after accounting for the observed covariates. Essentially,
our approach involves combining a multivariate regression model
and a transformation model and estimating it using only the ranks
of the data. For more details about the approach, we refer the
reader to the Appendix.

Under this approach, we model athlete scores for p = 7 sen-
sorimotor tasks, excluding Depth Perception and Go/No-Go due
to known limitations with Bluetooth connectivity and
a restrictive threshold, respectively. We consider two models (1)
X; contains indicators for athlete level of expertise, primary sport
type, and gender; (2) x; contains indicators for athlete level of
expertise, primary sport type, and gender, along with all two-way
interactions. Three-way interactions were not considered due to
small sample sizes in some of these subgroups. To ensure iden-
tifiability, neither of these models have an intercept term.

For each model, we perform Gibbs sampling to obtain
approximate samples of z; B, and C from their joint posterior



distribution. We draw a total of 100,000 samples after a burn-in
of 1,000 iterations, storing the values of Z, B and C every tenth
iteration. All athletes in the data, including those with missing
values for Visual Clarity and Contrast Sensitivity, are included
due to the fact that the missing values are sampled jointly with
the parameters of interest. The model was validated by stan-
dard convergence diagnostics and posterior predictive checks.
Summaries of the samples from the joint posterior distribution
of B and C are described in Section 3. Details of the Gibbs
sampling approach, including the prior distributions that we
used in obtaining the results presented in this study, are pro-
vided in the Appendix.

3. Results
3.1. Main effects model

Because we are performing a Bayesian analysis of these data,
we analyse approximate samples from the posterior distribu-
tion of the model parameters. Based on these samples, we can
calculate the mean value of the samples corresponding to
a specific model parameter (posterior mean) and calculate
uncertainty intervals based on these samples (credible inter-
vals). Throughout this paper, we adopt a convention that
a regression coefficient is significant if the corresponding sym-
metric 95% credible interval does not contain zero. This indi-
cates that there is at least a 95% probability that the estimated
direction of the monotone association is correct, based on the
posterior distribution of the model parameters. Similarly, we
call the difference between two groups significant if the 95%
credible interval of the difference in predicted group means
under the model does not include zero.

Using the model described in Section 2, we use Markov
chain Monte Carlo sampling to estimate the posterior distribu-
tion of the model parameters. Posterior means of the matrix of
regression coefficients are given in Table 5 and significant
coefficients are bolded. The coefficients are further visualised
in Figure 2, where the baseline group is a middle school male
who plays a strategic sport. It is also worth noting that supple-
mentary analyses found that athlete height, which is known to
correlate with arm length, did not moderate these gender
effects. As such, the present results should not be interpreted
in terms of access to the spatial extent of the lightboard on
which the task was presented.

Overall, results indicated that athletes with higher levels of
expertise perform better for all Nike Sensory Station tasks, with
the exception of Target Capture. Interestingly, the largest and

Table 5. Posterior mean coefficients for the main effects model. These coefficients
represent the conditional associations between the covariates and latent vari-
ables corresponding to ability on the Visual Clarity (VC), Contrast Sensitivity (CS),
Near-Far Quickness (NFQ), Target Capture (TC), Eye-Hand Coordination (EHC), and
Reaction Time (RXN) tasks respectively. Coefficients for which the 95% credible
intervals do not contain zero are bolded. The baseline corresponds to a middle
school male who plays a strategic sport.

VC cs NFQ TC PS EHC RXN
High School ~ 0.103 0.049 0.534 0.002 0.429 0.982 0.158
College 0.273  0.099 0.799 0.113  0.453 1.380 0.489
Pro 0.320 0.215 0.744 0018 0.436 1.664 0.553
Interceptive  0.187  0.123  0.121 0.001 -0.086 0.001 0.143
Female —-0.002 -0.042 -0.128 0.078 0.105 0.193 0.020
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most compelling differences were exhibited in tasks that
demand greater motor control, such as Eye Hand Coordination,
Near Far Quickness, and Reaction Time. In these tasks, mean-
ingful differences existed between middle school and high
school athletes, as well as between high school and college
athletes. While athlete level differences were much smaller in
the Visual Clarity and Contrast Sensitivity tasks, these measures
of visual sensitivity also showed small gradations. In general,
athletes in the sample with higher levels of expertise were
older on averaging, so some of these relationships may be
confounded with age.

Athletes who play primarily interceptive sports such as ten-
nis and baseball scored significantly better on measures of
visual sensitivity such as Visual Clarity and Contrast Sensitivity.
In addition, interceptive sport athletes also had significantly
higher Near-Far Quickness scores and Reaction Times than
strategic sport athletes, the latter of which was also noted by
(Mann et al,, 2007) in their meta-analysis of the literature.

Interestingly, athletes who play strategic sports tended to
do better at Perception Span, which measures the ability to
store and recreate visual patterns. This may indicate that spatial
working memory (e.g., mentally representing and maintaining
the location of teammates and opponents) is of primary impor-
tance in strategic sports.

Although the magnitudes of the visual-motor differences
between genders were substantially less than those across
levels of expertise, significant gender differences in task perfor-
mance were present. In particular, holding sport type and level
of expertise constant, males typically ranked higher than
females at Near-Far Quickness, while females typically ranked
higher at Eye-Hand Coordination and Perception Span.

3.2. Interaction model

To provide a more systematic look at group-level differences,
a second multivariate regression model was fit with both main
effects and all two-way interactions. Table 6 presents a summary
table of posterior means for this model, and Figure 3 visualises
the estimated task score percentile for a typical athlete under
each combination of level, sport type, and gender, a table for
which is provided in the Appendix.

One finding from the interaction model outcomes was that the
sport type differences in measures of visual sensitivity and spatial
working memory are compressed at higher levels of athletic exper-
tise. Specifically, interceptive sport athletes scored higher than
strategic sport athletes on Visual Clarity and Contrast Sensitivity,
with the largest differences exhibited at the middle school level.
The same pattern held for Perception Span, though strategic sport
athletes outperformed interceptive sport athletes at that task.
However, the sport type differences in measures of visual-motor
control either remained the same or were amplified at higher
levels of athletic expertise. In particular, there was a clear difference
in professional athlete reaction times by sport type, with intercep-
tive athletes typically demonstrating quicker responses.

When the groups were clustered hierarchically on the basis of
the estimated percentiles across the seven tasks, the groups were
primarily divided by level of expertise, with the greatest division
occurring between high school and college. The younger cohorts
(middle school and high school) separated cleanly into their own
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are in relation to males, shown by the dotted line, holding constant expertise and sport

type. In this way, our model enables comparison of magnitudes across both coefficients and tasks.

Table 6. Posterior mean coefficients for the interaction model. These coefficients represent the conditional associations between the covariates and latent variables

corresponding to ability on the Visual Clarity (VC), Contrast Sensitivity (CS), N

ear-Far Quickness (NFQ), Target Capture (TC), Eye-Hand Coordination (EHC), and Reaction

Time (RXN) tasks respectively. Coefficients for which the 95% credible intervals do not contain zero are bolded. The baseline is identical to that used in Table 5 and
Figure 2, corresponding to a middle school male who plays a strategic sport.

VC cs NFQ TC PS EHC RXN
High School 0.254 0.121 0.544 0.023 0.389 1.086 0.198
College 0.343 0.199 0.847 0.140 0.380 1.458 0.565
Pro 0.393 0.322 0.736 0.027 0.364 1.727 0.442
Interceptive 0.403 0.336 0.108 —-0.035 —-0.233 -0.072 -0.037
Female 0.131 -0.122 0.041 0.010 0.261 0.597 0.200
High School x Interceptive —-0.248 -0.211 0.066 —0.038 0.269 0.064 0.101
College X Interceptive —-0.106 -0.357 0.066 -0.077 0.206 0.186 0.060
Pro X Interceptive -0.203 —-0.255 0.043 0.028 0.186 0.077 0.352
High School x Female —0.196 0.058 —-0.156 —-0.033 -0.276 -0.494 -0.289
College x Female —0.034 0.113 -0.279 —0.050 —0.012 —-0.539 —-0.446
Pro x Female 0.081 —0.039 0.084 0.008 —-0.043 -0.336 0.196
Interceptive x Female -0.226 0.087 -0.075 0.259 -0.184 —-0.036 0.199

clusters and subdivided by sport type. There was much more a combination of psychometric methods (e.g., adaptive stair-

mixing within the collegiate and professional cohorts.

3.3. Relationship between tasks

case procedures, speeded reaction tasks, etc.). To explore how
these tasks relate to one another, and derive a more holistic
picture of the constructs tested in this battery, the posterior
distribution of the task correlation matrix C was evaluated.

The tasks comprising the Sensory Station battery were Figure 4 illustrates the location of the tasks along the first two
designed to measure sensory and motor abilities using eigenvectors of the maximum a posteriori (MAP) estimate of C.
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Middle School, Interceptive, Female

Middle School, Interceptive, Male

Middle School, Strategic, Female

Middle School, Strategic, Male

High School, Strategic, Female

High School, Strategic, Male

High School, Interceptive, Female

High School, Interceptive, Male

Pro, Interceptive, Male

College, Interceptive, Male

Pro, Strategic, Female -:

College, Interceptive, Female

College, Strategic, Male
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College, Strategic, Female
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Pro, Interceptive, Female
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Figure 3. Heat map of the estimated percentiles of task performance for each of the 16 groups of athletes. The groups are clustered hierarchically in the row
dendrogram. Note that middle school athletes and high school athletes form their own clusters, subdivided by sport type. College and professional athletes are more
mixed, and typically subdivided by gender.

1.0-
. Tasks
O 05- . .
° Visual Clarity
]
E Contrast Sensitivity
_qg’) 0.0- Near-Far Quickness
o
_g Target Capture
[<] Perception Span
o
$ -0.5- Eye-Hand Coordination
Reaction Time
-1.0-

-1.0 -0.5 0.0 0.5 1.0
First Eigenvector

Figure 4. The location of each of the tasks along the first and second eigenvectors of the MAP correlation matrix C. Most of the tasks are the same sign along the first
eigenvector, whereas VC and CS are different signs than the other tasks along the second eigenvector.

The first eigenvector can be interpreted as capturing overall  (Visual Clarity and Contrast Sensitivity) and the other tasks. An
visual-motor ability, whereas the second eigenvector captures examination of the conditional dependence structure of the
differences between the tasks that measure visual sensitivity task scores is provided in the Appendix.
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4. Discussion

In this article, we explored variation in visual-motor abilities
across a sample of 2317 athletes tested on the Nike Sensory
Station. Each athlete completed a standardised assessment
battery designed to capture distinct visual-motor abilities,
such as visual-motor control, visual sensitivity, and eye
quickness (Wang et al, 2015). By applying a rank-
likelihood multivariate regression approach to analyse the
relationship between task scores and background variables
such as athlete level, sport type, and gender, a number of
findings emerge.

Of fundamental interest, both the main effects and inter-
action models consistently reveal that visualmotor abilities,
especially those with strong visual-motor control demands,
are greater at higher levels of athletic achievement. This
gradation of expertise level is unique in the literature,
given that past research predominantly involves comparing
small numbers of athletes to non-athletes on divergent
choices of tasks (see Mann et al, 2007; Voss et al, 2010).
By estimating the performance difference on an identical
task battery from athletes ranging from middle school to
high school, to college, and to professional level, the cur-
rent study provides important data regarding visual-motor
variability across different age groups and competitive
levels. While caution must be taken in interpreting these
effects given the self-reported nature of the demographic
and sport characteristics, this study does provide explora-
tory evidence of cross sectional differences in the visual-
motor skills of athletes. As, such, future hypothesis-driven
research may use the characteristics identified here to guide
studies testing talent identification or training studies aimed
at improving on-field performance.

In addition, the current results indicate that performance
on the battery of tasks differs by sport type. The distinction
between strategic and interceptive sports has been made in
several meta-analytic reviews (Lebeau et al, 2016; Mann
et al, 2007; Voss et al., 2010), reflecting a strong research
interest in understanding how competition demands are
reflected in athlete’s underlying abilities. However, in the
past it has been difficult to infer such differences because of
the small sample sizes and varied assessments used across
studies. Our findings indicate that athletes playing intercep-
tive sports exhibit better Visual Clarity, Contrast Sensitivity,
Near-Far Quickness, and Reaction Times than those playing
strategic sports. In contrast, athletes playing strategic sports
tend to score higher on the Perception Span task. This
suggests that different visual-motor abilities are engaged
by the situational demands of each sport type. Specifically,
for interceptive sports, the importance of interacting with
a fast-moving object may demand an enhanced ability to
see the object, distinguish it from its environment, and react
to its movement (Davids, 2002). In strategic sports such as
soccer, athletes must simultaneously maintain an array of
information about teammates, opponents, and the ball. As
such, players with a high ability in Perception Span can
quickly code and preserve spatial information, obtaining
a performance advantage in pattern recognition and recall
(Abernethy, Burgess-Limerick, & Parks, 1994), decision-

making (Starkes & Ericsson, 2003), and development of
team mental model (Mohammed & Dumville, 2001).

The current findings indicate that female athletes are better,
on average, at Perception Span and Eye-Hand Coordination
than their male counterparts, holding constant the level of
expertise and sport type. This is particularly true at the middle
school level. The female advantage in Perception Span may be
attributed to the combination of rapid development of spatial
working memory during the middle school years (Gathercole,
Pickering, Ambridge, & Wearing, 2004) and earlier developmen-
tal acceleration in females. The female advantage in Eye-Hand
Coordination is surprising, though previous studies have found
that women are faster at programming a sequence of manual
movements (Nicholson & Kimura, 1996) and more accurate at
controlling arm movements under time pressure (Liu, Eklund, &
Tenenbaum, 2015). These female advantages may also be
related to past demonstrations that females exhibit faster per-
ceptual processing speeds and greater verbal fluency (e.g.,
Kimura, 1999; Voyer, Voyer, & Bryden, 1995), though other
studies have shown that gender differences in perceptual and
attentional processing observed in non-athletes are not pre-
sent in athlete populations (Lum, Enns, & Pratt, 2002). While it is
important to note that the current sample is substantially larger
than any of these past study cohorts, it is also the case that the
current sample (like in most other athlete studies) contains
many more males. In particular, there are only three profes-
sional female athletes in the sample who play interceptive
sports. Moreover, despite the fact that the our methods
account for sample size heterogeneity in each category, there
were particularly few professional female athletes, as compared
to their male counterparts. As such, the current conclusions
mirror those of Voss et al. (2010) who state that, "future studies
should try to recruit both males and females to permit more
within-study and across-study comparisons of gender.”

The methods and results in this paper have many strengths,
but also limitations. First, while the present study is based on
a very large sample of athletes, this programme was not avail-
able to all athletes. As such, this does not reflect a random
sample of all athletes, but rather only of athletes who either
individually paid for the services, participated in programmes
that did, or were at institutions where research was being
conducted with the device. Second, information provided
about the athletes was made through entry of self-reported
information by the athletes, such as their age, sport, level and
position. While it is expected that of the responses were accu-
rate, it is possible that some percentage of data was misla-
belled. Despite this, a large percentage of the centres
contributing to the dataset were verified by the authors
through discussions or published research studies from groups
using the systems (e.g., Burris et al., 2018; Erickson et al., 2011;
Gilrein, 2014; Poltavski & Biberdorff, 2014). Third, though it
would be valuable to infer new information about the devel-
opmental trajectories of athletes in this sample, the fact that
athlete level and age are highly confounded makes it impos-
sible to separate developmental effects from expertise effects.
Fourth, the correlational nature of the study makes it difficult to
discern potential causal relationships; for example, participa-
tion in the sport may improve performance on some visual-
measures. Lastly, due to the real-world nature of these data and



the desire to capture meaningful relationships among variables
(that do not necessarily conform to the assumptions inherent in
linear regression models), a novel model was developed to use
only the ranks of the data, making it robust to the marginal
distributions of the task scores. Although using ranks would
result in the loss of some information this was not a substantial
concern due to the large sample size of this dataset (Hoff, Niu, &
Wellner, 2014).

Collectively, these findings provide quantitative evidence, from
a very large, real-world test battery, of domain-specific visual
expertise in athletes. By analysing data collected on athletes,
spanning from developing adolescents to many of the most
elite professional athletes in the world, this study provides
a unique lens into the visual and motor capabilities that differ-
entiate individuals with different levels of expertise and types of
athletic experience. While it is not possible to infer causal relation-
ships, these findings do open intriguing questions about the
influences of nature and nurture on athletic achievement. To
arbitrate these challenging, but important questions, future
research should look to longitudinal developmental and interven-
tional designs to further investigate the findings observed here.
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